Current methods for capsular typing of Streptococcus pneumoniae.

Elita Jauneikaite; Anna S Tocheva; Johanna MC Jefferies; Rebecca A Gladstone; Saul N Faust; Myron Christodoulides; Martin L Hibberd; Stuart C Clarke; (2015) Current methods for capsular typing of Streptococcus pneumoniae. Journal of microbiological methods, 113. pp. 41-49. ISSN 0167-7012 DOI: 10.1016/j.mimet.2015.03.006
Copy

Streptococcus pneumoniae is a major respiratory tract pathogen causing pneumococcal disease mainly in children aged less than five years and in the elderly. Ninety-eight different capsular types (serotypes) of pneumococci have been reported, but pneumococcal conjugate vaccines (PCV) include polysaccharide antigens against only 7, 10 or 13 serotypes. It is therefore important to track the emergence of serotypes due to the clonal expansion of non-vaccine serotypes. Increased numbers of carried and disease-causing pneumococci are now being analysed as part of the post-PCV implementation surveillance studies and hence rapid, accurate and cost-effective typing methods are important. Here we describe serotyping methods published prior to 10th November 2014 for pneumococcal capsule typing. Sixteen methods were identified; six were based on serological tests using immunological properties of the capsular epitopes, eight were semi-automated molecular tests, and one describes the identification of capsular type directly from whole genome data, which also allows for further intra and inter-genome analyses. There was no single method that could be recommended for all pneumococcal capsular typing applications. Although the Quellung reaction is still considered to be the gold-standard, laboratories should take into account the number of pneumococcal isolates and the type of samples to be used for testing, the time frame for the results and the resources available in order to select the most appropriate method. Most likely, a combination of phenotypic and genotypic methods would be optimal to monitor and evaluate the impact of pneumococcal conjugate vaccines and to provide information for future vaccine formulations.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads