How to do (or not to do) ... Assessing the impact of a policy change with routine longitudinal data.

Mylene Lagarde; (2011) How to do (or not to do) ... Assessing the impact of a policy change with routine longitudinal data. Health policy and planning, 27 (1). pp. 76-83. ISSN 0268-1080 DOI: 10.1093/heapol/czr004
Copy

A lack of good quality evidence on the effect of alternative social policies in low- and middle-income countries has been recently underlined and the value of randomized trials increasingly advocated. However, it is also acknowledged that randomization is not always feasible or politically acceptable. Analyses using longitudinal data series before and after an intervention can also deliver robust results and such data are often reasonably easy to access. Using the example of evaluating the impact on utilization of a change in health financing policy, this article explains how studies in the literature have often failed to address the possible biases that can arise in a simple analysis of routine longitudinal data. It then describes two possible statistical approaches to estimate impact in a more reliable manner and illustrates in detail the more simple method. Advantages and limitations of this quasi-experimental approach to evaluating the impact of health policies are discussed.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads