HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials.

Daniel I Swerdlow; David Preiss; Karoline B Kuchenbaecker; Michael V Holmes; Jorgen EL Engmann; Tina Shah; Reecha Sofat; Stefan Stender; Paul CD Johnson; Robert A Scott; +126 more... Maarten Leusink; Niek Verweij; Stephen J Sharp; Yiran Guo; Claudia Giambartolomei; Christina Chung; Anne Peasey; Antoinette Amuzu; KaWah Li; Jutta Palmen; Philip Howard; Jackie A Cooper; Fotios Drenos; Yun R Li; Gordon Lowe; John Gallacher; Marlene CW Stewart; Ioanna Tzoulaki; Sarah G Buxbaum; Daphne L van der A; Nita G Forouhi; N Charlotte Onland-Moret; Yvonne T van der Schouw; Renate B Schnabel; Jaroslav A Hubacek; Ruzena Kubinova; Migle Baceviciene; Abdonas Tamosiunas; Andrzej Pajak; Roman Topor-Madry; Urszula Stepaniak; Sofia Malyutina; Damiano Baldassarre; Bengt Sennblad; Elena Tremoli; Ulf de Faire; Fabrizio Veglia; Ian Ford; J Wouter Jukema; Rudi GJ Westendorp; Gert Jan de Borst; Pim A de Jong; Ale Algra; Wilko Spiering; Anke H Maitland-van der Zee; Olaf H Klungel; Anthonius de Boer; Pieter A Doevendans; Charles B Eaton; Jennifer G Robinson; David Duggan; DIAGRAM Consortium; MAGIC Consortium; InterAct Consortium; John Kjekshus; John R Downs; Antonio M Gotto; Anthony C Keech; Roberto Marchioli; Gianni Tognoni; Peter S Sever; Neil R Poulter; David D Waters; Terje R Pedersen; Pierre Amarenco; Haruo Nakamura; John JV McMurray; James D Lewsey; Daniel I Chasman; Paul M Ridker; Aldo P Maggioni; Luigi Tavazzi; Kausik K Ray; Sreenivasa Rao Kondapally Seshasai; JoAnn E Manson; Jackie F Price; Peter H Whincup; Richard W Morris; Debbie A Lawlor; George Davey Smith; Yoav Ben-Shlomo; Pamela J Schreiner; Myriam Fornage; David S Siscovick; Mary Cushman; Meena Kumari; Nick J Wareham; WM Monique Verschuren; Susan Redline; Sanjay R Patel; John C Whittaker; Anders Hamsten; Joseph A Delaney; Caroline Dale; Tom R Gaunt; Andrew Wong; Diana Kuh; Rebecca Hardy; Sekar Kathiresan; Berta A Castillo; Pim van der Harst; Eric J Brunner; Anne Tybjaerg-Hansen; Michael G Marmot; Ronald M Krauss; Michael Tsai; Josef Coresh; Ronald C Hoogeveen; Bruce M Psaty; Leslie A Lange; Hakon Hakonarson; Frank Dudbridge ORCID logo; Steve E Humphries; Philippa J Talmud; Mika Kivimäki; Nicholas J Timpson; Claudia Langenberg; Folkert W Asselbergs; Mikhail Voevoda; Martin Bobak; Hynek Pikhart; James G Wilson; Alex P Reiner; Brendan J Keating; Aroon D Hingorani; Naveed Sattar; (2014) HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet, 385 (9965). pp. 351-361. ISSN 0140-6736 DOI: 10.1016/S0140-6736(14)61183-1
Copy

BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis. FINDINGS: Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05-0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18-0·43), waist circumference (0·32 cm, 0·16-0·47), plasma insulin concentration (1·62%, 0·53-2·72), and plasma glucose concentration (0·23%, 0·02-0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00-1·05); the rs12916-T allele association was consistent (1·06, 1·03-1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18-1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10-0·38 in all trials; 0·33 kg, 95% CI 0·24-0·42 in placebo or standard care controlled trials and -0·15 kg, 95% CI -0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9-6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06-1·18 in all trials; 1·11, 95% CI 1·03-1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04-1·22 in intensive-dose vs moderate dose trials). INTERPRETATION: The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition. FUNDING: The funding sources are cited at the end of the paper.


picture_as_pdf
mmc1.pdf
subject
Published Version
Available under Creative Commons: NC-ND 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads