MRI of the lungs using hyperpolarized noble gases.

Harald E Möller; X Josette Chen; Brian Saam; Klaus D Hagspiel; G Allan Johnson; Talissa A Altes; Eduard E de Lange; Hans-Ulrich Kauczor; (2002) MRI of the lungs using hyperpolarized noble gases. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 47 (6). pp. 1029-1051. ISSN 0740-3194 DOI: 10.1002/mrm.10173
Copy

The nuclear spin polarization of the noble gas isotopes (3)He and (129)Xe can be increased using optical pumping methods by four to five orders of magnitude. This extraordinary gain in polarization translates directly into a gain in signal strength for MRI. The new technology of hyperpolarized (HP) gas MRI holds enormous potential for enhancing sensitivity and contrast in pulmonary imaging. This review outlines the physics underlying the optical pumping process, imaging strategies coping with the nonequilibrium polarization, and effects of the alveolar microstructure on relaxation and diffusion of the noble gases. It presents recent progress in HP gas MRI and applications ranging from MR microscopy of airspaces to imaging pulmonary function in patients and suggests potential directions for future developments.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads