Creatine loading and resting skeletal muscle phosphocreatine flux: a saturation-transfer NMR study.

D Wiedermann; J Schneider; A Fromme; L Thorwesten; HE Möller; (2001) Creatine loading and resting skeletal muscle phosphocreatine flux: a saturation-transfer NMR study. Magma (New York, N.Y.), 13 (2). pp. 118-126. ISSN 0968-5243 DOI: 10.1007/BF02668160
Copy

31P saturation-transfer nuclear magnetic resonance spectroscopy was used to study skeletal muscle phosphocreatine (PCr) flux in healthy male volunteers. Data analysis included consideration of effects from incomplete saturation and radiofrequency spillover. Spectra were recorded from the resting gastrocnemius muscle before and after 6 days of creatine monohydrate (Cr-H2O) intake (20 g/day). Parallel to an improved muscle performance during maximal intermittent exercise following Cr-H2O supplementation, the concentration of PCr increased (P=0.01) by 23% (34.9+/-2.8 mmol/l vs. 28.6+/-2.7 mmol/l), whereas other metabolites were unaffected (inorganic phosphate: 4.3+/-1.4 mmol/l, free intracellular Mg(2+): 1.1+/-0.7 mmol/l, cytosolic pH: 7.04+/-0.02). Forward and reverse fluxes through the creatine kinase (CK) reaction did not change significantly from their baseline levels (v(for): 11.8+/-5.4 mmol/l per second vs. 15.3+/-6.8 mmol/l per second, (v(rev): 9.5+/-3.4 mmol/l per second vs. 10.9+/-3.7 mmol/l per second). The rate of PCr resynthesis in resting muscle is not limited by the CK reaction, which is near equilibrium. Consequently, the post-load increase in total creatine has no effect on the unidirectional CK reaction rates.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads