Global variation in the effects of ambient temperature on mortality: a systematic evaluation.

Yuming Guo; Antonio Gasparrini ORCID logo; Ben Armstrong ORCID logo; Shanshan Li; Benjawan Tawatsupa; Aurelio Tobias; Eric Lavigne; Micheline de Sousa Zanotti Stagliorio Coelho; Michela Leone; Xiaochuan Pan; +12 more... Shilu Tong; Linwei Tian; Ho Kim; Masahiro Hashizume; Yasushi Honda; Yue-Liang Leon Guo; Chang-Fu Wu; Kornwipa Punnasiri; Seung-Muk Yi; Paola Michelozzi; Paulo Hilario Nascimento Saldiva; Gail Williams; (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology (Cambridge, Mass), 25 (6). pp. 781-789. ISSN 1044-3983 DOI: 10.1097/EDE.0000000000000165
Copy

BACKGROUND: Studies have examined the effects of temperature on mortality in a single city, country, or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. METHODS: We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States, and Canada). Two-stage analyses were used to assess the nonlinear and delayed relation between temperature and mortality. In the first stage, a Poisson regression allowing overdispersion with distributed lag nonlinear model was used to estimate the community-specific temperature-mortality relation. In the second stage, a multivariate meta-analysis was used to pool the nonlinear and delayed effects of ambient temperature at the national level, in each country. RESULTS: The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, whereas heat effects appeared quickly and did not last long. CONCLUSIONS: People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with increased risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads