The Complementary Exponentiated Exponential Geometric Lifetime Distribution
<jats:p>We proposed a new family of lifetime distributions, namely, complementary exponentiated exponential geometric distribution. This new family arises on a latent competing risk scenario, where the lifetime associated with a particular risk is not observable but only the maximum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its survival and hazard functions, moments,<jats:italic>r</jats:italic>th moment of the<jats:italic>i</jats:italic>th order statistic, mean residual lifetime, and modal value. Inference is implemented via a straightforwardly maximum likelihood procedure. The practical importance of the new distribution was demonstrated in three applications where our distribution outperforms several former lifetime distributions, such as the exponential, the exponential-geometric, the Weibull, the modified Weibull, and the generalized exponential-Poisson distribution.</jats:p>
Item Type | Article |
---|