Sensitivity Analysis for Incomplete Contingency Tables: The Slovenian Plebiscite Case
<jats:title>SUMMARY</jats:title> <jats:p>Classical inferential procedures induce conclusions from a set of data to a population of interest, accounting for the imprecision resulting from the stochastic component of the model. Less attention is devoted to the uncertainty arising from (unplanned) incompleteness in the data. Through the choice of an identifiable model for non-ignorable non-response, one narrows the possible data-generating mechanisms to the point where inference only suffers from imprecision. Some proposals have been made for assessing the sensitivity to these modelling assumptions; many are based on fitting several plausible but competing models. For example, we could assume that the missing data are missing at random in one model, and then fit an additional model where non-random missingness is assumed. On the basis of data from a Slovenian plebiscite, conducted in 1991, to prepare for independence, it is shown that such an ad hoc procedure may be misleading. We propose an approach which identifies and incorporates both sources of uncertainty in inference: imprecision due to finite sampling and ignorance due to incompleteness. A simple sensitivity analysis considers a finite set of plausible models. We take this idea one step further by considering more degrees of freedom than the data support. This produces sets of estimates (regions of ignorance) and sets of confidence regions (combined into regions of uncertainty).</jats:p>
Item Type | Article |
---|---|
Keywords | contingency table, missing at random, non-ignorable, missingness, overspecified model, saturated model, sensitivity, parameter, Categorical-data, inference, trials |
ISI | 166938100002 |