Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas.

Laure Michelet; Linnka Lefebvre-Legendre; Sarah E Burr; Jean-David Rochaix; Michel Goldschmidt-Clermont; (2010) Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant biotechnology journal, 9 (5). pp. 565-574. ISSN 1467-7644 DOI: 10.1111/j.1467-7652.2010.00564.x
Copy

Chloroplast transformation in microalgae offers great promise for the production of proteins of pharmaceutical interest or for the development of novel biofuels. For many applications, high level expression of transgenes is desirable. We have transformed the chloroplast of Chlamydomonas reinhardtii with two genes, acrV and vapA, which encode antigens from the fish pathogen Aeromonas salmonicida. The promoters and 5' untranslated regions of four chloroplast genes were compared for their ability to drive expression of the bacterial genes. The highest levels of expression were obtained when they were placed under the control of the cis-acting elements from the psaA-exon1 gene. The expression of these chimeric genes was further increased when a nuclear mutation that affects a factor involved in psaA splicing was introduced in the genetic background of the chloroplast transformants. Accumulation of both the chimeric mRNAs and the recombinant proteins was dramatically increased, indicating that negative feedback loops limit the expression of chloroplast transgenes. Our results demonstrate the potential of manipulating anterograde signalling to alter negative regulatory feedback loops in the chloroplast and improve transgene expression.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads