A Bayesian Semi-parametric Approach for the Differential Analysis of Sequence Counts Data.

Michele Guindani; Nuno Sepúlveda; Carlos Daniel Paulino; Peter Müller; (2014) A Bayesian Semi-parametric Approach for the Differential Analysis of Sequence Counts Data. Applied statistics, 63 (3). pp. 385-404. ISSN 0035-9254 DOI: 10.1111/rssc.12041
Copy

Data obtained using modern sequencing technologies are often summarized by recording the frequencies of observed sequences. Examples include the analysis of T cell counts in immunological research and studies of gene expression based on counts of RNA fragments. In both cases the items being counted are sequences, of proteins and base pairs, respectively. The resulting sequence-abundance distribution is usually characterized by overdispersion. We propose a Bayesian semi-parametric approach to implement inference for such data. Besides modeling the overdispersion, the approach takes also into account two related sources of bias that are usually associated with sequence counts data: some sequence types may not be recorded during the experiment and the total count may differ from one experiment to another. We illustrate our methodology with two data sets, one regarding the analysis of CD4+ T cell counts in healthy and diabetic mice and another data set concerning the comparison of mRNA fragments recorded in a Serial Analysis of Gene Expression (SAGE) experiment with gastrointestinal tissue of healthy and cancer patients.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads