The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology.

K Artavanis-Tsakonas; JE Tongren; EM Riley; (2003) The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clinical and experimental immunology, 133 (2). pp. 145-152. ISSN 0009-9104 DOI: 10.1046/j.1365-2249.2003.02174.x
Copy

Throughout history malaria has proved to be a significant threat to human health. Between 300 and 500 million clinical cases occur each year worldwide, approximately 2 million of which are fatal, primarily in children. The vast majority of malaria-related deaths are due to infection with Plasmodium falciparum; P. vivax causes severe febrile illness but is rarely fatal. Following repeated exposure to infection, people living in malaria endemic areas gradually acquire mechanisms to limit the inflammatory response to the parasite that causes the acute febrile symptoms (clinical immunity) as well as mechanisms to kill parasites or inhibit parasite replication (antiparasite immunity). Children, who have yet to develop protective immune mechanisms are thus at greater risk of clinical malaria, severe disease and death than adults. However, two epidemiological observations indicate that this is, perhaps, an oversimplified model. Firstly, cerebral malaria - a common manifestation of severe malaria - typically occurs in children who have already acquired a significant degree of antimalarial immunity, as evidenced by lower mean parasite densities and resistance to severe anaemia. One potential explanation is that cerebral malaria is, in part, an immune-mediated disease in which immunological priming occurs during first infection, eventually leading to immunopathology on re-infection. Secondly, among travelers from nonendemic areas, severe malaria is more common - and death rates are higher - in adults than in children. If severe malaria is an immune-mediated disease, what might be priming the immune system of adults from nonendemic areas to cause immunopathology during their first malaria infection, and how do adults from endemic areas avoid severe immunopathology? In this review we consider the role of innate and adaptive immune responses in terms of (i) protection from clinical malaria (ii) their potential role in immunopathology and (iii) the subsequent development of clinical immunity. We conclude by proposing a model of antimalarial immunity which integrates both the immunological and epidemiological data collected to date.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads