Copper exposure and potential biomarkers of copper metabolism.
Relevant biological effects associated with mild to moderate copper deficiency and copper excess are unknown. It is difficult to identify markers of these early changes because limits of the homeostatic range are still undefined and early changes may represent adaptive responses that do not imply necessarily risk of damage. We report here a series of studies carried out to shed light on the responses within the homeostatic range, by assessing classic parameters of copper status in humans at different copper exposure. In adult healthy volunteers that had an estimated daily intake of 0.9 mg Cu/day (approximately 15 microg/kg/d), exposure to additional 50-60 microg of copper/kg/day for three months or up to 150 microg/kg/d for two months resulted in no significant changes of SOD activity in erythrocytes, of copper concentration (in serum, erythrocytes and mononuclear cells) and of serum ceruloplasmin (ANOVA). Neither were found differences by gender or age. As in previous studies in infants, the non-ceruloplasmin copper fraction was positively correlated to serum copper (r = 0.58). Assessing variations on copper absorption, infants supplemented/not supplemented with oral copper (80 ug/kg/14 days), at age 1 and 3 months, showed copper absorption close to 80% at both ages; no effect was observed for age or supplementation, suggesting that either these concentrations do not elicit regulatory mechanisms or that at this age down regulation for copper absorption is not efficient. These studies indicate that in the range of the copper homeostasis area the markers tested are not suitable to detect mild changes (within the homeostatic range) of copper metabolism.
Item Type | Article |
---|---|
ISI | 178671000019 |