Risk factors of coronary heart disease: A Bayesian model averaging approach

Duolao Wang; Panuwat Lertsithichai; Kiran Nanchahal ORCID logo; Mohammed Yousufuddin; (2003) Risk factors of coronary heart disease: A Bayesian model averaging approach. Journal of applied statistics, 30 (7). pp. 813-826. ISSN 0266-4763 DOI: 10.1080/0266476032000076074
Copy

To analyse the risk factors of coronary heart disease (CHD), we apply the Bayesian model averaging approach that formalizes the model selection process and deals with model uncertainty in a discrete-time survival model to the data from the Framingham Heart Study. We also use the Alternating Conditional Expectation algorithm to transform the risk factors, such that their relationships with CHD are best described, overcoming the problem of coding such variables subjectively. For the Framingham Study, the Bayesian model averaging approach, which makes inferences about the effects of covariates on CHD based on an average of the posterior distributions of the set of identified models, outperforms the stepwise method in predictive performance. We also show that age, cholesterol, and smoking are nonlinearly associated with the occurrence of CHD and that P-values from models selected from stepwise methods tend to overestimate the evidence for the predictive value of a risk factor and ignore model uncertainty.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads