Gene discovery in the Entamoeba invadens genome.

Zheng Wang; John Samuelson; C Graham Clark ORCID logo; Daniel Eichinger; Jaishree Paul; Katrina Van Dellen; Neil Hall; Iain Anderson; Brendan Loftus; (2003) Gene discovery in the Entamoeba invadens genome. Molecular and biochemical parasitology, 129 (1). pp. 23-31. ISSN 0166-6851 DOI: 10.1016/s0166-6851(03)00073-2
Copy

Entamoeba invadens, a parasite of reptiles, is a model for the study of encystation by the human enteric pathogen Entamoeba histolytica, because E. invadens form cysts in axenic culture. With approximately 0.5-fold sequence coverage of the genome, we were able to get insights into E. invadens gene and genome features. Overall, the E. invadens genome displays many of the features that are emerging from ongoing genome sequencing efforts in E. histolytica. At the nucleotide level the E. invadens genome has on average 60% sequence identity with that of E. histolytica. The presence of introns in E. invadens was predicted with similar consensus (GTTTGT em leader A/TAG) sequences to those identified in E. histolytica and Entamoeba dispar. Sequences highly repeated in the genome of E. histolytica (rRNAs, tRNAs, CXXC-rich proteins, and Leu-rich repeat proteins) were found to be highly repeated in the E. invadens genome. Numerous proteins homologous to those implicated in amoebic virulence, (Gal/GalNAc lectins, amoebapores, and cysteine proteinases) and drug resistance (p-glycoproteins) were identified. Homologs of proteins involved in cell cycle, vesicular trafficking and signal transduction were identified, which may be involved in en/excystation and cell growth of E. invadens. Finally, multiple copies of a number of E. invadens genes coding for predicted enzymes involved in core metabolism and the targets of anti-amoebic drugs were identified.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads