Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays.

Graham R Stewart; Lorenz Wernisch; Richard Stabler ORCID logo; Joseph A Mangan; Jason Hinds; Ken G Laing; Douglas B Young; Philip D Butcher; (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology (Reading, England), 148 (Pt 10). pp. 3129-3138. ISSN 1350-0872 DOI: 10.1099/00221287-148-10-3129
Copy

Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis. The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis. Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass alpha-crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads