Spatial modelling of soil-transmitted helminth infections in Kenya: a disease control planning tool.

Rachel L Pullan ORCID logo; Peter W Gething; Jennifer L Smith; Charles S Mwandawiro; Hugh JW Sturrock; Caroline W Gitonga; Simon I Hay; Simon Brooker; (2011) Spatial modelling of soil-transmitted helminth infections in Kenya: a disease control planning tool. PLoS neglected tropical diseases, 5 (2). e958-. ISSN 1935-2727 DOI: 10.1371/journal.pntd.0000958
Copy

BACKGROUND: Implementation of control of parasitic diseases requires accurate, contemporary maps that provide intervention recommendations at policy-relevant spatial scales. To guide control of soil transmitted helminths (STHs), maps are required of the combined prevalence of infection, indicating where this prevalence exceeds an intervention threshold of 20%. Here we present a new approach for mapping the observed prevalence of STHs, using the example of Kenya in 2009. METHODS AND FINDINGS: Observed prevalence data for hookworm, Ascaris lumbricoides and Trichuris trichiura were assembled for 106,370 individuals from 945 cross-sectional surveys undertaken between 1974 and 2009. Ecological and climatic covariates were extracted from high-resolution satellite data and matched to survey locations. Bayesian space-time geostatistical models were developed for each species, and were used to interpolate the probability that infection prevalence exceeded the 20% threshold across the country for both 1989 and 2009. Maps for each species were integrated to estimate combined STH prevalence using the law of total probability and incorporating a correction factor to adjust for associations between species. Population census data were combined with risk models and projected to estimate the population at risk and requiring treatment in 2009. In most areas for 2009, there was high certainty that endemicity was below the 20% threshold, with areas of endemicity ≥ 20% located around the shores of Lake Victoria and on the coast. Comparison of the predicted distributions for 1989 and 2009 show how observed STH prevalence has gradually decreased over time. The model estimated that a total of 2.8 million school-age children live in districts which warrant mass treatment. CONCLUSIONS: Bayesian space-time geostatistical models can be used to reliably estimate the combined observed prevalence of STH and suggest that a quarter of Kenya's school-aged children live in areas of high prevalence and warrant mass treatment. As control is successful in reducing infection levels, updated models can be used to refine decision making in helminth control.


picture_as_pdf
pntd.0000958.pdf
subject
Published Version
Available under Creative Commons: 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads