Regulating immunity to malaria.

EM Riley; S Wahl; DJ Perkins; L Schofield; (2006) Regulating immunity to malaria. Parasite immunology, 28 (1-2). pp. 35-49. ISSN 0141-9838 DOI: 10.1111/j.1365-3024.2006.00775.x
Copy

The optimal outcome of a malaria infection is that parasitized cells are killed and degraded without inducing significant pathology. Since much of the pathology of malaria infection can be immune-mediated, this implies that immune responses have to be carefully regulated. The mechanisms by which anti-malarial immune responses are believed to be regulated were discussed at the recent Malaria Immunology Workshop (Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; February 2005). Potential regulatory mechanisms include regulatory T cells, which have been shown to significantly modify cellular immune responses to various protozoan infections, including leishmania and malaria; neutralising antibodies to pro-inflammatory malarial toxins such as glycosylphosphatidylinositol and haemozoin; and self-regulating networks of effector molecules. Innate and adaptive immune responses are further moderated by the broader immunological environment, which is influenced by both the genetic background of the host and by co-infection with other pathogens. A detailed understanding of the interplay between these different immunoregulatory processes may facilitate the rationale design of vaccines and novel therapeutics.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads