Mapping 'partially resistant', 'fully resistant', and 'super resistant' malaria.

Inbarani Naidoo; Cally Roper ORCID logo; (2013) Mapping 'partially resistant', 'fully resistant', and 'super resistant' malaria. Trends in parasitology, 29 (10). pp. 505-515. ISSN 1471-4922 DOI: 10.1016/j.pt.2013.08.002
Copy

Sulfadoxine-pyrimethamine (SP) is used throughout Africa for intermittent preventive treatment (IPT) of malaria, but resistance threatens its efficacy. We found marked regional differences in the genotypes responsible for SP resistance when mapping recent surveys of dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutations. In West Africa, a 'partially resistant' combination of dhfr N51I, N59R, and S108N with dhps A437G predominates, whereas in East Africa the 'fully resistant' combination of dhfr N51I, N59R, and S108N with dhps A437G+K540E is found. There are three East African foci where 'fully resistant' populations have additionally acquired dhps 581G and/or dhfr 164L to become 'super resistant'. SP-IPT in infants and pregnant women is reported to have failed in super resistant areas prompting review of SP-IPT use in affected areas.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads