Evolutionary optimality in stochastic search problems.

Mark D Preston; Jonathan W Pitchford; A Jamie Wood; (2010) Evolutionary optimality in stochastic search problems. Journal of the Royal Society, Interface / the Royal Society, 7 (50). pp. 1301-1310. ISSN 1742-5689 DOI: 10.1098/rsif.2010.0090
Copy

'Optimal' behaviour in a biological system is not simply that which maximizes a mean, or temporally and spatially averaged, fitness function. Rather, population dynamics and demographic and environmental stochasticity are fundamental evolutionary ingredients. Here, we revisit the problem of optimal foraging, where some recent studies claim that organisms should forage according to Lévy walks. We show that, in an ecological scenario dominated by uncertainty and high mortality, Lévy walks can indeed be evolutionarily favourable. However, this conclusion is dependent on the definition of efficiency and the details of the simulations. We analyse measures of efficiency that incorporate population-level characteristics, such as variance, superdiffusivity and heavy tails, and compare the results with those generated by simple maximizing of the average encounter rate. These results have implications on stochastic search problems in general, and also on computational models of evolutionary optima.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads