A live experimental vaccine against Burkholderia pseudomallei elicits CD4+ T cell-mediated immunity, priming T cells specific for 2 type III secretion system proteins.

AshrafulHaque; KarenChu; AnnaEaston; Mark PStevens; Edouard EGalyov; TimAtkins; RickTitball; Gregory J Bancroft ORCID logo; (2006) A live experimental vaccine against Burkholderia pseudomallei elicits CD4+ T cell-mediated immunity, priming T cells specific for 2 type III secretion system proteins. The Journal of infectious diseases, 194 (9). pp. 1241-1248. ISSN 0022-1899 DOI: 10.1086/508217
Copy

Burkholderia pseudomallei is the etiological agent of melioidosis, a serious human disease for which no vaccine is available. Immunization of susceptible BALB/c mice with the live attenuated mutant B. pseudomallei ilvI (referred to as "2D2") generated significant, although incomplete, immunity. Splenic B. pseudomallei-specific T cells, detected in immunized mice, proliferated and produced interferon-gamma in vitro in response to dead bacteria. Assessment of T cell antigen specificity indicated that subpopulations of B. pseudomallei-reactive T cells were responsive to BopE, a type III secretion system (TTSS) effector protein, and to a lesser extent to BipD, a TTSS translocator protein. Increased survival of severe combined immunodeficient mice adoptively transferred with T cells from immunized mice, compared with that of naive T cell recipients, demonstrated that immunization with 2D2 generated T cell-mediated immunity. CD4+ and CD8+ cell depletion studies demonstrated that CD4+ cells, but not CD8+ cells, mediated this protection in vivo. Thus, CD4+ T cells can mediate vaccine-induced immunity to experimental melioidosis.


Full text not available from this repository.

Explore Further

Read more research from the creator(s):

Find work associated with the faculties and division(s):

Find work associated with the research centre(s):

Find work from this publication: