Improved MRI quantification of spinal cord atrophy in multiple sclerosis.

Hugh Kearney; Marios C Yiannakas; Khaled Abdel-Aziz; Claudia AM Wheeler-Kingshott; Daniel R Altmann; Olga Ciccarelli; David H Miller; (2013) Improved MRI quantification of spinal cord atrophy in multiple sclerosis. Journal of magnetic resonance imaging, 39 (3). pp. 617-623. ISSN 1053-1807 DOI: 10.1002/jmri.24194
Copy

PURPOSE: To identify an improved method for measuring spinal cord cross-sectional area (CSA) using magnetic resonance imaging (MRI) in multiple sclerosis (MS). MATERIALS AND METHODS: MRI was performed on 15 controls and 15 MS patients and repeated in nine controls and nine patients after 6 months. At this timepoint, an additional scan was acquired to evaluate scan-rescan reproducibility. Two sequences were acquired in the cervical cord: 3D phase sensitive inversion recovery (PSIR) and 3D magnetization prepared rapid acquisition T1-weighted gradient echo. CSA was outlined at C2-C3 using two methods: a semiautomated edge detection method and active surface model (ASM). We evaluated reproducibility for all combinations of sequences and analysis methods using coefficient of variation (COV) and intraclass correlation coefficient and performed sample size calculations for clinical trials to reduce longitudinal cord atrophy. RESULTS: PSIR/ASM combination provided the lowest values of COV for intrarater, interrater, scan-rescan reproducibility (0.002%, 0.03%, and 0.1% respectively). At 6-month follow-up no significant changes were seen in CSA of controls, and a trend towards significance was observed in patients. CONCLUSION: PSIR/ASM proved more reproducible than established methods of evaluating CSA in MS and also provides the lowest number of subjects per arm for 6-month and 1-year clinical trials.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads